Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep 15;270(37):21806-12.
doi: 10.1074/jbc.270.37.21806.

Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes

Affiliations
Free article

Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes

S H Lee et al. J Biol Chem. .
Free article

Abstract

Calmodulin plays pivotal roles in the transduction of various Ca(2+)-mediated signals and is one of the most highly conserved proteins in eukaryotic cells. In plants, multiple calmodulin isoforms with minor amino acid sequence differences were identified but their functional significances are unknown. To investigate the biological function of calmodulins in the regulation of calmodulin-dependent enzymes, we cloned cDNAs encoding calmodulins in soybean. Among the five cDNAs isolated from soybean, designated as SCaM-1 to -5, SCaM-4 and -5 encoded very divergent calmodulin isoforms which have 32 amino acid substitutions from the highly conserved calmodulin, SCaM-1 encoded by SCaM-1 and SCaM-3. SCaM-4 protein produced in Escherichia coli showed typical characteristics of calmodulin such as Ca(2+)-dependent electrophoretic mobility shift and the ability to activate phosphodiesterase. However, the extent of mobility shift and antigenicity of SCaM-4 were different from those of SCaM-1. Moreover, SCaM-4 did not activate NAD kinase at all in contrast to SCaM-1. Also there were differences in the expression pattern of SCaM-1 and SCaM-4. Expression levels of SCaM-4 were approximately 5-fold lower than those of SCaM-1 in apical and elongating regions of hypocotyls. In addition, SCaM-4 transcripts were barely detectable in root whereas SCaM-1 transcripts were as abundant as in apical and elongating regions of hypocotyls. In conclusion, the different biochemical properties together with differential expression of SCaM-4 suggest that this novel calmodulin may have different functions in plant cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources