Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 May;23(2):325-31.
doi: 10.1042/bst0230325.

Amylin regulation of carbohydrate metabolism

Affiliations
Review

Amylin regulation of carbohydrate metabolism

A Young et al. Biochem Soc Trans. 1995 May.

Abstract

This review describes how amylin may work in the control of carbohydrate metabolism by actions on gastric emptying and on muscle glycogen metabolism. Amylin, which is co-secreted with insulin from pancreatic beta-cells in response to nutrient stimuli, affects both carbohydrate absorption and carbohydrate disposal. Amylin appears to regulate carbohydrate metabolism as a partner to insulin. Defending fuel stores tends to be hierarchical; plasma glucose is defended first, then muscle glycogen, then liver glycogen, then fat. Fuel stores are replenished by both incorporating ingested nutrient and by translocating nutrient stores among body sites. Lactate may better be regarded as a vector of fuel transfer rather than a 'dead end' in metabolism. Amylin can promote the translocation of lactate from muscle to liver. The amylin effect, illustrated by the simultaneous decrease in muscle glycogen and increase in liver glycogen [53, 56], is similar to the catecholamine effect observed by Cori et al. [57]. Amylin thus may be important in maintaining liver glycogen stores via the Cori cycle and the 'indirect' glycogen synthesis pathway [58,59]. Unlike catecholamines, amylin does not mobilize fat or impede insulin action in adipose tissue [30,35]. It can supply lactate to the liver, and because lactate is a preferred lipogenic substrate [60], may thereby favour fat storage. Amylin may also help to control carbohydrate absorption via an 'entero-insular loop' to ensure that absorption from the gut remains within the regulatory limits for carbohydrate disposal by peripheral tissues. This regulatory system is essential for normal control of plasma glucose and appears to be disrupted in type-1 diabetes, an amylin-deficient state.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources