Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul;34(1):4-10.
doi: 10.1002/mrm.1910340103.

The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo

Affiliations

The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo

J L Boxerman et al. Magn Reson Med. 1995 Jul.

Abstract

Understanding the relationship between fMRI signal changes and activated cortex is paramount to successful mapping of neuronal activity. To this end, the relative extravascular and intravascular contribution to fMRI signal change from capillaries (localized), venules (less localized) and macrovessels (remote, draining veins) must be determined. In this work, the authors assessed both the extravascular and intravascular contribution to blood oxygenation level-dependent gradient echo signal change at 1.5 T by using a Monte Carlo model for susceptibility-based contrast in conjunction with a physiological model for neuronal activation-induced changes in oxygenation and vascular volume fraction. The authors compared our Model results with experimental fMRI signal changes with and without velocity sensitization via bipolar gradients to null the intravascular signal. The model and experimental results are in agreement and suggest that the intravascular spins account for the majority of fMRI signal change on T2*-weighted images at 1.5 T.

PubMed Disclaimer

Publication types

LinkOut - more resources