An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain
- PMID: 7678312
- PMCID: PMC237450
- DOI: 10.1128/JVI.67.2.961-968.1993
An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain
Abstract
We previously described a monoclonal antibody (MAb) library generated by infecting BALB/c mice with rubella virus (RV) and selected by an enzyme-linked immunosorbent assay (ELISA) using purified virion targets. Plasmid pARV02-01, which expresses the fusion protein RecA1-35-GIGDLGSP-E1(202)-E1(283)-GDP-LacZ9-1015 in Escherichia coli, was shown to be a ligand for MAbs E1-18 and E1-20 (J. S. Wolinsky, M. McCarthy, O. Allen-Cannady, W. T. Moore, R. Jin, S. N. Cao, A. Lovett, and D. Simmons, J. Virol. 65:3986-3994, 1991). Both of these MAbs neutralize RV infectivity. A series of five overlapping synthetic peptides was made to further explore the requirements of this MAb binding domain. One of these peptides (SP15; E1(208) to E1(239)) proved an effective ligand for both MAbs in the ELISA. Stepwise synthesis of SP15 defined the minimal amino-terminal requirement for binding MAb E1-18 as E1(221) and that of MAb E1-20 as E1(223); the minimal carboxyl-terminal requirement is uncertain but does not exceed E1(239). Immunization of mice and rabbits with SP15 induced polyvalent antibody reactive with SP15, with other overlapped and related but not unrelated synthetic peptides, and with RV. The rabbit anti-SP15 antibody showed neutralization activity to RV similar to that of MAbs E1-18 and E1-20 but lacked hemagglutination inhibition activity. These data define a neutralization domain on E1 and suggest that the RV epitopes conserved by SP15 may be critical for protective host humoral immune responses.
Similar articles
-
Monoclonal antibody-defined epitope map of expressed rubella virus protein domains.J Virol. 1991 Aug;65(8):3986-94. doi: 10.1128/JVI.65.8.3986-3994.1991. J Virol. 1991. PMID: 1712855 Free PMC article.
-
Presence of a neutralizing domain in isolates of rubella virus in Cordoba, Argentina.Clin Diagn Lab Immunol. 1997 Jul;4(4):493-5. doi: 10.1128/cdli.4.4.493-495.1997. Clin Diagn Lab Immunol. 1997. PMID: 9220172 Free PMC article.
-
Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides.J Virol. 1993 Feb;67(2):673-81. doi: 10.1128/JVI.67.2.673-681.1993. J Virol. 1993. PMID: 7678302 Free PMC article.
-
Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica.Virology. 1998 Jul 5;246(2):317-28. doi: 10.1006/viro.1998.9200. Virology. 1998. PMID: 9657950
-
Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay.J Clin Microbiol. 1992 Jul;30(7):1841-7. doi: 10.1128/jcm.30.7.1841-1847.1992. J Clin Microbiol. 1992. PMID: 1629342 Free PMC article.
Cited by
-
Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961-2009.Virol J. 2013 Jan 25;10:32. doi: 10.1186/1743-422X-10-32. Virol J. 2013. PMID: 23351667 Free PMC article.
-
Molecular and Structural Insights into the Life Cycle of Rubella Virus.J Virol. 2021 Apr 26;95(10):e02349-20. doi: 10.1128/JVI.02349-20. Epub 2021 Feb 24. J Virol. 2021. PMID: 33627388 Free PMC article. Review.
-
Relatives of rubella virus in diverse mammals.Nature. 2020 Oct;586(7829):424-428. doi: 10.1038/s41586-020-2812-9. Epub 2020 Oct 7. Nature. 2020. PMID: 33029010 Free PMC article.
-
Molecular biology of rubella virus.Adv Virus Res. 1994;44:69-160. doi: 10.1016/s0065-3527(08)60328-0. Adv Virus Res. 1994. PMID: 7817880 Free PMC article. Review.
-
Rubella virus replication and links to teratogenicity.Clin Microbiol Rev. 2000 Oct;13(4):571-87. doi: 10.1128/CMR.13.4.571. Clin Microbiol Rev. 2000. PMID: 11023958 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases