Modeling the three-dimensional structure of RNA
- PMID: 7678567
- DOI: 10.1096/fasebj.7.1.7678567
Modeling the three-dimensional structure of RNA
Abstract
The limited number of RNA structures determined by X-ray crystallography and NMR spectroscopy compels the use of experimental and theoretical methods that are less precise to obtain information on RNA conformation. RNA flexibility, a consequence of rotational freedom about seven intra- and internucleotide bonds, is unfortunately of such magnitude that these alternate techniques fall short of providing sufficient information to build robust tertiary structures. Various RNA modeling methods, described herein, permit the organization of this structural data to the form of three-dimensional structures. Interactive computer graphics techniques, for example, have generated several useful models. Also, conventional computer algorithms involving the minimization of empirical energy functions, previously limited to small molecules, are giving way to methods able to handle much larger molecules. Modified distance geometry and molecular mechanics algorithms, using simplified "pseudoatom" representations, can generate structures consistent with input data. A constraint satisfaction algorithm combined with discrete representations of nucleotide conformations systematically explores poorly defined regions of a molecule yielding all-atom representations, but requires enough structural constraints to avoid a computational explosion.
Similar articles
-
Modeling the three-dimensional structure of RNA using discrete nucleotide conformational sets.J Mol Biol. 1993 Feb 20;229(4):1049-64. doi: 10.1006/jmbi.1993.1104. J Mol Biol. 1993. PMID: 7680379
-
Bridging the gap in RNA structure prediction.Curr Opin Struct Biol. 2007 Apr;17(2):157-65. doi: 10.1016/j.sbi.2007.03.001. Epub 2007 Mar 23. Curr Opin Struct Biol. 2007. PMID: 17383172 Review.
-
Modeling RNA topological structures using small angle X-ray scattering.Methods. 2016 Jul 1;103:18-24. doi: 10.1016/j.ymeth.2016.04.015. Epub 2016 Jun 2. Methods. 2016. PMID: 27090001 Review.
-
Explicit distance geometry: identification of all the degrees of freedom in a large RNA molecule.J Biomol Struct Dyn. 1991 Feb;8(4):759-79. doi: 10.1080/07391102.1991.10507843. J Biomol Struct Dyn. 1991. PMID: 1711857
-
Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques.Biophys J. 1994 Jun;66(6):1777-95. doi: 10.1016/S0006-3495(94)80972-5. Biophys J. 1994. PMID: 7521223 Free PMC article.
Cited by
-
A three-dimensional working model for a guide RNA from Trypanosoma brucei.Nucleic Acids Res. 1997 Jun 15;25(12):2311-8. doi: 10.1093/nar/25.12.2311. Nucleic Acids Res. 1997. PMID: 9171080 Free PMC article.
-
RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.J Nanosci Nanotechnol. 2005 Dec;5(12):1964-82. doi: 10.1166/jnn.2005.446. J Nanosci Nanotechnol. 2005. PMID: 16430131 Free PMC article. Review.
-
A small modified hammerhead ribozyme and its conformational characteristics determined by mutagenesis and lattice calculation.Nucleic Acids Res. 1995 Sep 11;23(17):3531-8. doi: 10.1093/nar/23.17.3531. Nucleic Acids Res. 1995. PMID: 7567466 Free PMC article.
-
Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure.J Mol Biol. 2007 Sep 28;372(4):942-957. doi: 10.1016/j.jmb.2007.06.058. Epub 2007 Jun 27. J Mol Biol. 2007. PMID: 17707400 Free PMC article.
-
A genetic algorithm based molecular modeling technique for RNA stem-loop structures.Nucleic Acids Res. 1995 Feb 11;23(3):419-26. doi: 10.1093/nar/23.3.419. Nucleic Acids Res. 1995. PMID: 7533901 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources