Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan;64(1):98-109.
doi: 10.1016/S0006-3495(93)81344-4.

The nature of ion and water barrier crossings in a simulated ion channel

Affiliations

The nature of ion and water barrier crossings in a simulated ion channel

S W Chiu et al. Biophys J. 1993 Jan.

Abstract

Using a combination of techniques, including molecular dynamics, time-correlation analysis, stochastic dynamics, and fitting of continuum diffusion theory to electrophysiological data, a characterization is made of thermally driven sodium, water, and D2O motion within the gramicidin A channel. Since the channel contents are constrained to move in a single-file fashion, the motion that corresponds to experimentally measurable rates of permeation of the membrane is the motion of the center of mass of the channel contents. We therefore emphasize channel contents center-of-mass motion in our analysis of molecular dynamics computations. The usual free energy calculation techniques would be of questionable validity when applied to such motion. As an alternative to those techniques, we postulate a periodic sinusoidal free energy profile (related to the periodic structure of the helical channel) and deduce the fluid dynamic diffusion coefficient and the height and spacing of the free energy barriers from the form of the mean-square-deviation function, using stochastic computations. The fluid dynamic friction in each case appears similar to that for aqueous solution. However, the diffusive motions are modulated by a spatially periodic free energy profile with a periodicity characteristic of an L-D pair of amino acids in the gramicidin helix, approximately 1.7 A in the model we use. The barrier height depends on which substance is moving in the channel, but in each case is several times thermal energy. For barriers of this width and height, the motion is intermediate between the low-friction (transition-state) and high-friction (Brownian) limits. Thus, neither of these formalisms that have been used commonly to describe membrane permeation gives an accurate picture of the underlying physical process (although the Brownian description seems closer to correct). The non-Markovian Langevin equation must be solved to describe properly the statistics of the process. The "channel state of matter" characteristic of the channel contents appears to have some properties typical of the solid and some typical of the liquid state. The magnitude of the local friction and nature of the ion solvation are similar to the liquid state, but the periodicities of structure, free energy, and dynamics are somewhat solid-like. The alignment of water dipoles in the channel bears some resemblance to the orientational ordering of a nematic liquid crystal, but unlike a nematic liquid crystal, the waters have a degree of translational order as well. Thus, the "channel state" is not adequately described by analogy to either the solid or liquid states or to liquid crystals but must be dealt with as its own characteristic type of condensed matter.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biophys J. 1989 Jan;55(1):147-57 - PubMed
    1. Prog Biophys Mol Biol. 1985;46(1):51-96 - PubMed
    1. Biophys J. 1988 Oct;54(4):751-6 - PubMed
    1. Biophys J. 1984 Aug;46(2):229-48 - PubMed
    1. Science. 1991 Sep 20;253(5026):1374-9 - PubMed

Publication types