Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar 15;53(6):1255-61.

Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester

Affiliations
  • PMID: 7680281

Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester

K Frenkel et al. Cancer Res. .

Abstract

Caffeic acid phenethyl ester (CAPE) was isolated from propolis (a product of honeybee hives) that has been used in folk medicine as a potent antiinflammatory agent. CAPE is cytotoxic to tumor and virally transformed but not to normal cells. Our main goal was to establish whether CAPE inhibits the tumor promoter (12-O-tetradecanoylphorbol-13-acetate)-induced processes associated with carcinogenesis. Topical treatment of SENCAR mice with very low doses (0.1-6.5 nmol/topical treatment) of CAPE strongly inhibits the following 12-O-tetradecanoylphorbol-13-acetate-mediated oxidative processes that are considered essential for tumor promotion: (a) polymorphonuclear leukocyte infiltration into mouse skin and ears, as quantified by myeloperoxidase activity; (b) hydrogen peroxide (H2O2) production; and (c) formation of oxidized bases in epidermal DNA, as measured by 5-hydroxymethyluracil and 8-hydroxylguanine. A 0.5-nmol dose of CAPE suppresses the oxidative burst of human polymorphonuclear leukocytes by 50%. At higher doses (1-10 mumol), CAPE inhibits edema and ornithine decarboxylase induction in CD-1 and SENCAR mice. Interestingly, we discovered that 12-O-tetradecanoylphorbol-13-acetate-induced H2O2 production in bovine lenses also is inhibited by CAPE. Cumulatively, these findings point to CAPE as being a potent chemopreventive agent, which may be useful in combating diseases with strong inflammatory and/or oxidative stress components, i.e., various types of cancer and possibly cataract development.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources