Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb;6(2):113-7.
doi: 10.1002/gcc.2870060208.

Detection of somatic changes in human renal cell carcinomas with oligonucleotide probes specific for simple repeat motifs

Affiliations

Detection of somatic changes in human renal cell carcinomas with oligonucleotide probes specific for simple repeat motifs

S Bock et al. Genes Chromosomes Cancer. 1993 Feb.

Abstract

The purpose of our study was to detect somatic changes in renal cell carcinoma by multilocus fingerprinting. DNA fingerprints were generated from the DNA of normal and malignant renal tissue samples of 29 patients with nonhereditary kidney carcinoma by using oligonucleotide probes specific for simple repeat motifs such as (GTG)5, (CA)8, (GACA)4, or (TTAGGG)3. Each probe rendered a typical fingerprint pattern, because it is specific with respect to the target regions recognized in the genome. The restriction enzymes used were HinfI and HaeIII. Changed banding patterns were detected by using (GTG)5 in 20% of the tumors, in 20% for (CA)8 after HinfI digestion, and in 10% after HaeIII digestion. Even more informative probes were (GACA)4, showing 70% changes after HaeIII digestion, and (TTAGGG)3, with 80% changes after digestion with either enzyme. Since the simple repeat motifs recognized by (GACA)4 are localized on the short arms of the acrocentric chromosomes (13, 14, 15, 21, and 22), it is possible that sequences important for renal carcinogenesis are present in these regions. The observation of changes in regions to which (TTAGGG)3 hybridizes points to an involvement of DNA elements in telomeric sequence related regions in human kidney tumor formation.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources