Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May;60(5):1673-81.
doi: 10.1111/j.1471-4159.1993.tb13390.x.

In vivo brain dialysis study of the somatodendritic release of serotonin in the Raphe nuclei of the rat: effects of 8-hydroxy-2-(di-n-propylamino)tetralin

Affiliations

In vivo brain dialysis study of the somatodendritic release of serotonin in the Raphe nuclei of the rat: effects of 8-hydroxy-2-(di-n-propylamino)tetralin

A Adell et al. J Neurochem. 1993 May.

Abstract

The characteristics of the serotonin (5-HT) output in the dorsal and median raphe nuclei of the rat were studies using in vivo microdialysis. The basal output of 5-HT increased after KCl was added to the perfusion fluid. In contrast, neither the omission of calcium ions nor the addition of 0.5 microM tetrodotoxin affected dialysate 5-HT or 5-hydroxyindoleacetic acid (5-HIAA). Reserpine did not decrease the output of 5-HT and 5-HIAA 24 h later and p-chloroamphetamine increased 5-HT in both vehicle- and reserpine-treated rats severalfold. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), at 1 or 10 microM, perfused into the raphe did not change the outputs of 5-HT or 5-HIAA. Higher doses (0.1, 1, and 10 mM) increased extracellular 5-HT in the raphe, probably via an inhibition of uptake. In animals bearing two probes (raphe nuclei and ventral hippocampus), only the 10 mM dose of 8-OH-DPAT perfused into the raphe decreased the hippocampal output of 5-HT and 5-HIAA. The systemic injection of 0.1 mg/kg 8-OH-DPAT decreased dialysate 5-HT and 5-HIAA in the raphe and hippocampus. These results suggest that extracellular 5-HT in raphe nuclei originates from a cytoplasmic pool and is not dependent on either nerve impulse of 5-HT neurons or local activation of 5-HT1A receptors.

PubMed Disclaimer

Publication types

LinkOut - more resources