Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May 15;268(14):10160-7.

Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells

Affiliations
  • PMID: 7683668
Free article

Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells

Z S Ji et al. J Biol Chem. .
Free article

Abstract

Addition of apolipoprotein (apo) E to rabbit beta-very low density lipoproteins (beta-VLDL) has been shown to result in a marked enhancement of their binding and uptake by various cell types. Apolipoprotein E binds to lipoprotein receptors and proteoglycans. To distinguish between apoE binding to these sites, cells were treated with heparinase. Heparinase treatment of receptor-negative familial hypercholesterolemic (FH) fibroblasts and human hepatoma cells (HepG2) released 30-40% of newly synthesized cell surface 35S-labeled proteoglycans and decreased the binding of beta-VLDL+apoE to FH and normal fibroblasts and HepG2 cells by more than 80%. Furthermore, heparinase treatment significantly decreased the uptake of fluorescently labeled beta-VLDL+apoE by HepG2 cells and decreased cholesteryl ester synthesis in FH fibroblasts by 75%. Likewise, canine chylomicron remnants enriched in apoE demonstrated enhanced binding that was 80% inhibited by heparinase treatment of HepG2 cells. Heparinase treatment did not affect beta-VLDL (without added apoE) or low density lipoprotein (LDL) binding to these cells or the binding activity of beta-VLDL+apoE to the LDL receptor-related protein (LRP) or to the LDL receptor on ligand blots. Chinese hamster ovary (CHO) mutant cells lacking the synthesis of either heparan sulfate (pgsD-677) or all proteoglycans (pgsA-745) did not display any enhanced binding of the beta-VLDL+apoE. By comparison, wild-type CHO cells demonstrated enhanced binding of beta-VLDL+apoE that could be abolished by treatment with heparinase. These mutant cells and wild-type CHO cells possessed a similar amount of LRP, as determined by ligand blot analyses and by alpha 2-macroglobulin binding, and possessed a similar amount of LDL receptor activity, as determined by LDL binding. Therefore, we would interpret these data as showing that heparan sulfate proteoglycan may be involved in the initial binding of the apoE-enriched remnants with the subsequent involvement of the LRP in the uptake of these lipoproteins. It remains to be determined whether the heparan sulfate proteoglycan can function by itself in both the binding and internalization of the apoE-enriched remnants or whether the proteoglycan is part of a complex with LRP that mediates a two-step process, i.e. binding and subsequent internalization by the receptor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources