Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Apr;4(4):247-55.

Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action

Affiliations
  • PMID: 7684247
Comparative Study

Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action

K Jalink et al. Cell Growth Differ. 1993 Apr.

Abstract

Lysophosphatidic acid (LPA) is a mitogenic phospholipid produced by certain activated cells and present in serum. LPA stimulates phospholipase C and inhibits adenylate cyclase in its target cells, apparently by activating a specific G-protein-coupled receptor. Here, we demonstrate that LPA causes transient rounding of N1E-115 and NG108-15 neuronal cells accompanied by growth cone collapse and retraction of neurites. The effect of LPA is concentration dependent, being half-maximal at 10-20 nM, and reversibly blocked by suramin, an LPA receptor antagonist. The morphological response to LPA is indistinguishable from that evoked by thrombin or a thrombin receptor-activating peptide (TRP) (K. Jalink and W. H. Moolenaar, J. Cell Biol., 118: 411-419, 1992); yet, LPA and thrombin appear to act through distinct receptors. LPA-induced shape changes, like those induced by thrombin and TRP, are driven by contraction of the cortical actin cytoskeleton and not attributable to prior phospholipid hydrolysis and Ca2+ mobilization nor to other classic second messenger systems. Instead, LPA- and TRP-induced shape changes are accompanied by a small but significant increase in p60src protein tyrosine kinase activity. Treatment of cells with pervanadate selectively inhibits LPA- and TRP-induced shape changes as well as p60src activation. These results indicate that, in N1E-115 and NG108-15 cells, LPA and TRP trigger neurite retraction and cell rounding through a novel, receptor-mediated signaling pathway, and they suggest that p60src may play a role in this pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources