Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May 25;268(15):11321-5.

Protein kinase C activates chloride conductance in C127 cells stably expressing the cystic fibrosis gene

Affiliations
  • PMID: 7684379
Free article

Protein kinase C activates chloride conductance in C127 cells stably expressing the cystic fibrosis gene

M C Dechecchi et al. J Biol Chem. .
Free article

Abstract

The regulatory domain (R domain) of the cystic fibrosis transmembrane conductance regulator (CFTR) is phosphorylated by protein kinase A and protein kinase C (PKC) in vivo (Picciotto, M. R., Cohn, J. A., Bertuzzi, G., Greengard, P., and Nairn, A. C. (1992) J. Biol. Chem. 267, 12742-12752), but so far the functional effect of the PKC-dependent phosphorylation has not been clarified. We investigated the effect of PKC on the CFTR-mediated Cl- transport by treating with phorbol 12-myristate 13-acetate (PMA), the cell line C127i stably expressing CFTR wild type (C127 CFTRw/t), or CFTR bearing the most common mutation deltaF508 (C127 CFTRdF508). We show that PMA activates Cl- efflux in C127 CFTRw/t, but not in C127 CFTRdF508 and C127i. The PMA-dependent activation of CFTR is not mediated by increase of intracellular [cAMP] and is not the result of a primary activation of a K+ conductive pathway. These results strongly suggest that PKC activates directly CFTR-mediated Cl- transport.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources