Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr 22;235(1):37-43.
doi: 10.1016/0014-2999(93)90817-2.

Inhibition of beta-adrenoceptor agonist relaxation of airway smooth muscle by Ca(2+)-activated K+ channel blockers

Affiliations

Inhibition of beta-adrenoceptor agonist relaxation of airway smooth muscle by Ca(2+)-activated K+ channel blockers

J C Huang et al. Eur J Pharmacol. .

Abstract

In isolated guinea pig trachea contracted by 0.5 mM acetylcholine, the cumulative relaxant concentration-response curves to the beta 2-adrenoceptor agonist, salbutamol, were shifted to the right by depolarizing concentrations of KCl, as well as by charybdotoxin, iberiotoxin and tetraethylammonium ion, which are antagonists of the high-conductance Ca(2+)-activated K+ channel. The shifts produced by KCl (40 mM), charybdotoxin (100 nM), iberiotoxin (50 nM), and tetraethylammonium ion (2 mM) were approximately 230-fold, 10-fold, 78-fold, and 8-fold, respectively. The blockade of beta 2-adrenoceptor agonist-induced relaxation by these agents was totally reversed by 0.3 microM nifedipine. Similar reversal was obtained with either 100 microM CdCl2, or low Ca2+ (50 microM) Krebs medium. These data suggest that charybdotoxin, iberiotoxin and tetraethylammonium ion, like KCl, cause membrane depolarization which in turn activates voltage-dependent Ca2+ channels. The influx of Ca2+ via these channels provides an additional mode to that of release of intracellular Ca2+ evoked by acetylcholine for maintaining cell Ca2+ concentration at a high level. This is apparently sufficient to account functionally for the blockade of beta 2-adrenoceptor agonist-induced relaxation. In view of this interpretation regarding the action of Ca(2+)-activated K+ channel antagonists, earlier proposals ascribing the relaxant effect of beta 2-adrenoceptor agonists strictly to activation of these channels must be reevaluated.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources