Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug;288(2):207-14.
doi: 10.1016/0027-5107(93)90086-u.

Chemically altered apurinic sites in phi X174 DNA give increased mutagenesis in SOS-induced E. coli

Affiliations

Chemically altered apurinic sites in phi X174 DNA give increased mutagenesis in SOS-induced E. coli

R Bockrath et al. Mutat Res. 1993 Aug.

Abstract

Single-strand DNA from bacteriophage phi X174 am3 is treated with mild acid and heat to produce increasing numbers of apurinic sites per molecule. Samples are assayed, either directly or after additional chemical reactions, by electroporation into the recipient E. coli strain HF4714(su-1+). Modified apurinic sites are produced by reactions with O-methyl- or O-benzyl-hydroxylamine, and reduced apurinic sites by reactions with sodium borohydride. Reversion mutation frequencies are significant only if the recipient strain is SOS-induced (by growth after UV irradiation). A simple apurinic site at the target gives rise to mutation (a transversion) with a probability of 0.07, while the modified or reduced apurinic site has a mutagenic efficiency of 0.22-0.27 or 0.29, respectively. The open ring form of deoxyribose may account for the 3-4-fold increased mutagenicity with altered apurinic lesions. Also considered are effects by temperature and cyclobutane pyrimidine dimers on mutagenicity and the relatively invariant survival curves that obtain regardless of chemical alterations at the apurinic sites and/or SOS induction.

PubMed Disclaimer

Publication types

LinkOut - more resources