Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul;102(1):59-74.
doi: 10.1085/jgp.102.1.59.

Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes

Affiliations

Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes

L Ebihara et al. J Gen Physiol. 1993 Jul.

Abstract

Connexin46 (cxn46) is a gap junctional protein that was cloned from a rat lens cDNA library. Expression of cxn46 in solitary Xenopus oocytes resulted in the development of a large time- and voltage-dependent current that was not observed in noninjected control oocytes or in oocytes injected with mRNA for cxn43 or cxn32. The cxn46-induced current activated at potentials positive to -20 mV. On repolarization to -40 mV, the current deactivated over a period of several seconds. Removal of external calcium caused a marked increase in the amplitude of the cxn46-induced current, shifted the steady-state activation curve to more negative potentials, and altered the kinetics of activation and deactivation. Increasing external calcium had the opposite effect. The ability of cxn46 to induce the formation of cell-to-cell channels was tested in the oocyte pair system. Oocyte pairs injected with cxn46 mRNA + antisense oligonucleotides for Xenopus cxn38 were strongly coupled. In contrast, oocyte pairs injected with antisense alone showed no coupling. The inactivation kinetics of the gap junctional channels resembled the deactivation kinetics of the cxn46-induced current in solitary oocytes.

PubMed Disclaimer

Publication types

MeSH terms