Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov;13(6):993-7.
doi: 10.1038/jcbfm.1993.124.

Inhibition of nitric oxide synthase attenuates the cerebral blood flow response to stimulation of postganglionic parasympathetic nerves in the rat

Affiliations

Inhibition of nitric oxide synthase attenuates the cerebral blood flow response to stimulation of postganglionic parasympathetic nerves in the rat

Y Morita-Tsuzuki et al. J Cereb Blood Flow Metab. 1993 Nov.

Abstract

Stimulation of cerebrovascular parasympathetic nerves markedly increases cortical blood flow. Nitric oxide (NO) or a NO-containing compound is present in these nerves and may therefore, upon release, be partly responsible for the flow increase. In addition, transmitters released from the nerves may cause synthesis and release of this compound from the endothelium. The contribution of NO synthesis to the cortical blood flow (CoBF) increase during parasympathetic stimulation was elucidated in rat by laser-Doppler flowmetry. Thirty-minute exposure to circulating N omega-nitro-L-arginine methyl ester (L-NAME) 50 mg kg-1 eliminated most of the response (from 104 to 8% increase), whereas 10-min exposure to this dose or 30-min exposure to 5 mg kg-1 caused a less marked reduction. The reducing effect was particularly evident after elimination of the systemic blood pressure increase caused by L-NAME (only 3% increase after the high dose). Infusion of L-arginine restored the flow response. Resting CoBF was not substantially affected by blockade of NO formation. Thus, release of an NO-containing compound constitutes a major component of the increase in CoBF caused by parasympathetic nerve stimulation but does not seem to contribute to cortical flow regulation during resting conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources