Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul;44(1):85-90.
doi: 10.1016/0165-1838(93)90382-5.

Localization of NADPH diaphorase in bladder afferent and postganglionic efferent neurons of the rat

Affiliations

Localization of NADPH diaphorase in bladder afferent and postganglionic efferent neurons of the rat

M A Vizzard et al. J Auton Nerv Syst. 1993 Jul.

Abstract

NADPH diaphorase histochemistry was used in combination with axonal labelling techniques to determine if NADPH diaphorase is present in afferent and postganglionic efferent pathways to the urinary bladder of the rat. In the L6 and S1 dorsal root ganglia, 80.9 and 78.5%, respectively, of bladder afferent neurons labelled with fluorescent dyes were NADPH diaphorase positive. In the major pelvic ganglion (MPG), many non-labelled neurons and fibers were intensely stained for NADPH diaphorase. Intensely stained cells were clustered near the exit of the penile nerve although stained cells were also scattered throughout the ganglion. Only a small percentage (3.5%) of bladder postganglionic neurons in the MPG were NADPH diaphorase positive. Since NADPH diaphorase activity commonly reflects the presence of nitric oxide synthase, the present findings raise the possibility that nitric oxide may have a role as a neurotransmitter or neuromodulator in afferent pathways from the urinary bladder.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources