Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec 7;32(48):13156-61.
doi: 10.1021/bi00211a026.

Dependence of nucleic acid degradation on in situ free-radical production by adriamycin

Affiliations

Dependence of nucleic acid degradation on in situ free-radical production by adriamycin

E Feinstein et al. Biochemistry. .

Abstract

Adriamycin (Adr) is one of the most powerful antitumor drugs. Its therapeutic effect may be due to its cyclic reduction-oxidation and, thus, generation of oxygen radicals. Using the spin-trap 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) and EPR we have demonstrated that in an enzymatic system consisting of NADPH, NADPH-cytochrome P-450 reductase, and Fe(EDTA)2 Adr stimulates formation of .OH radicals in the presence of DNA or RNA with equal efficiency. Incubation of nucleic acids in the Adr-dependent reaction generating .OH radicals resulted in extensive degradation of double- and single-stranded DNA, but did not effect RNA. In contrast, both DNA and RNA were effectively destroyed in a footprinting system, ascorbate-Fe(EDTA)2-H2O2, which generates .OH radicals in massive quantities. Fluorescence assays indicated that Adr forms stable complexes with ds- and ss-DNA but reacts only slightly with RNA. We conclude that the formation of Adr-nucleic acid complex is necessary for .OH radical-mediated cleavage of the latter, and thus, Adr may be regarded as a chemical nuclease acting in situ.

PubMed Disclaimer

LinkOut - more resources