Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb;68(2):584-97.
doi: 10.1016/S0006-3495(95)80220-1.

Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry

Affiliations

Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry

D Otten et al. Biophys J. 1995 Feb.

Abstract

The perturbation of phospholipid bilayer membranes by a nonionic detergent, octaethyleneglycol mono-n-dodecylether (C12E8), was investigated by 2H- and 31P-NMR, static and dynamic light scattering, and differential scanning calorimetry. Preequilibrated mixtures of the saturated phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphorylcholine (DLPC) with the detergent were studied over a broad temperature range including the temperature of the main thermotropic phase transition of the pure phospholipids. Above this temperature, at a phospholipid/detergent molar ratio 2:1, the membranes were oriented in the magnetic field. Cooling of the mixtures below the thermotropic phase transition temperatures of the pure phospholipids led to micelle formation. In mixtures of DPPC and DMPC with C12E8, a narrow calorimetric signal at the onset temperature of the solubilization suggested that micelle formation was related to the disorder-order transition in the phospholipid acyl chains. The particle size changed from 150 nm to approximately 7 nm over the temperature range of the bilayer-micelle transition. The spontaneous orientation of the membranes at high temperatures enabled the direct determination of segmental order parameters from the deuterium spectra. The order parameter profiles of the phospholipid acyl chains could be attributed to slow fluctuations of the whole membrane and to detergent-induced local perturbations of the bilayer order. The packing constraints in the mixed bilayers that eventually lead to bilayer solubilization were reflected by the order parameters of the interfacial phospholipid acyl chain segments and of the phospholipid headgroup. These results are interpreted in terms of the changing average shape of the component molecules. Considering the decreasing cross sectional areas in the acyl chain region and the increasing hydration of the detergent headgroups, the bilayer-micelle transition is the result of an imbalance in the chain and headgroup repulsion. A neutral or pivotal plane can be defined on the basis of the temperature dependence of the interfacial quadrupolar splittings.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochim Biophys Acta. 1977 Mar 25;486(3):444-50 - PubMed
    1. Chem Phys Lipids. 1993 Sep;64(1-3):143-62 - PubMed
    1. Q Rev Biophys. 1977 Aug;10(3):353-418 - PubMed
    1. Biochemistry. 1978 Jan 24;17(2):215-9 - PubMed
    1. Biochemistry. 1978 Jan 24;17(2):381-4 - PubMed

Publication types

LinkOut - more resources