Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995;36(3):321-4.
doi: 10.1016/0361-9230(94)00203-d.

Quantitative analysis of long-term potentiation in the hippocampal dentate gyrus of the freely-moving 15-day-old rat

Affiliations

Quantitative analysis of long-term potentiation in the hippocampal dentate gyrus of the freely-moving 15-day-old rat

J D Bronzino et al. Brain Res Bull. 1995.

Abstract

The magnitude and duration of long-term potentiation (LTP) of perforant path/dentate granule cell synapses was examined in freely moving rats beginning at 15 days of age. Measures of dentate granule cell population EPSP slope and population spike amplitude (PSA) obtained before and after tetanization were used to evaluate the level of LTP. Tetanization resulted in significant enhancement of both the population EPSP slope (approximately +75%) and PSA (approximately +40%) measures. This enhancement was maintained without significant change for 18 h, after which both measures began a steady and continuous rise. Daily input/output response measures from age-matched nontetanized animals were used to factor out enhancement related to normal development. Under this schema, tetanization-induced enhancement of both EPSP slope and PSA measures decayed slowly, beginning 18-24 h after tetanization, returning to baseline 5 days after tetanization. Enhancement obtained from 90-day-old animals decayed to baseline 24 h after tetanization. The longer duration of LTP obtained from preweanlings is discussed with regard to the development of inhibitory systems modulating granule cell excitability.

PubMed Disclaimer

Publication types

LinkOut - more resources