Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Dec:142:321-42.
doi: 10.1111/j.1600-065x.1994.tb00895.x.

Promotion and inhibition of activation-induced apoptosis in T-cell hybridomas by oncogenes and related signals

Affiliations
Review

Promotion and inhibition of activation-induced apoptosis in T-cell hybridomas by oncogenes and related signals

D R Green et al. Immunol Rev. 1994 Dec.

Abstract

The Two Signal: Death/Survival Model suggests that cellular proliferation and physiological cell death should be intimately associated such that, in the absence of external influences, a normal cell departing from rest will have an equal probability of undergoing either process. The c-Myc protooncogene product has been implicated in cell cycle progression and in the control of gene expression, and more recently c-Myc has also been seen to promote apoptotic cell death. As predicted from the model, c-Myc-induced apoptosis is inhibited by growth factors or other anti-apoptotic signals including those provided by some oncogenes. Here, we discuss experiments that test the Two Signal: Death/Survival Model in the phenomenon of activation-induced apoptosis in T-cell hybridomas. Ligation of the antigen receptor on these cells leads to activation, resulting in cytokine production and apoptosis. Inhibition of c-Myc expression by addition of antisense oligodeoxynucleotides or transforming growth factor beta inhibits this form of apoptosis. Because c-Myc is known to bind to several cellular proteins, including Max, we further examined the effects of expression of a dominant negative Max on activation-induced apoptosis. We found that this Max mutant, which interferes with the function of the Myc/Max heterodimer, inhibits the induction of apoptosis by antigen receptor ligation. Thus, both Myc and Max play roles in activation-induced apoptosis, presumably via control of gene expression. Further, as predicted, signals generated from growth factor receptors or the v-Abl oncogene interfere with activation-induced apoptosis. In contrast, the anti-apoptotic effects of Bcl-2 are not active in this form of apoptosis. Finally, a role for Fas/Fas-ligand interactions in activation-induced apoptosis is considered.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources