Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Mar 15;306 ( Pt 3)(Pt 3):837-42.
doi: 10.1042/bj3060837.

Localization and identification of Ca2+ATPases in highly purified human platelet plasma and intracellular membranes. Evidence that the monoclonal antibody PL/IM 430 recognizes the SERCA 3 Ca2+ATPase in human platelets

Affiliations

Localization and identification of Ca2+ATPases in highly purified human platelet plasma and intracellular membranes. Evidence that the monoclonal antibody PL/IM 430 recognizes the SERCA 3 Ca2+ATPase in human platelets

S Bokkala et al. Biochem J. .

Abstract

The Ca2+ATPase activities of highly purified human platelet membranes prepared by high-voltage free-flow electrophoresis have been analysed by using [gamma-32P]ATP hydrolysis, recognition by antibodies and phosphoenzyme-complex formation. The Ca2+ATPase activity present in mixed membranes was found to be predominantly associated with intracellular membranes after subfractionation, with only a low level of activity associated with plasma membranes. The intracellular-membrane Ca2+ATPase activity was inhibited totally with thapsigargin (Tg), whereas the plasma-membrane Ca2+ATPase was not significantly affected, suggesting that the latter does not belong to the SERCA (sarco-endoplasmic-reticulum Ca2+ATPase) class. A monoclonal antibody, 5F10, raised to the red-cell membrane Ca2+ATPase [Cheng, Magocsi, Cooper, Penniston and Borke (1993) Cell Physiol. Biochem. 4, 31-43] recognized two bands at 135 and 150 kDa in mixed membranes and plasma membranes, and the corresponding bands in red-blood-cell membranes, confirming the Ca2+ATPase to be of the PMCA (plasma-membrane Ca2+ATPase) type. No recognition of any band was detected in intracellular membranes. Identification of the intracellular-membrane Ca2+ATPase activity was carried out with polyclonal antibodies with known specificity towards SERCA 2b (S.2b) and SERCA 3 (N89), and a monoclonal antibody, PL/IM 430, raised against platelet intracellular membranes. All of these antibodies recognized the 100 kDa Ca2+ATPase in mixed membranes and intracellular membranes, with little or no recognition of the activity in the plasma membranes. In some membrane preparations the antibody PL/IM 430 and antiserum N89 recognized similar degradation products, of 74, 70 and 40 kDa, in the intracellular-membrane fraction. The Ca2+ATPase recognized by PL/IM 430 was immunoprecipitated, and the immunoprecipitated protein was specifically recognized by the antiserum N89, but not by S.2b. Analysis of the phosphoenzyme-complex formation revealed potent phosphorylation of the 100 and 74 kDa peptides, both recognized by PL/IM 430 and N89. These studies report the presence of a PMCA in a purified plasma-membrane fraction from human platelets, and that the antibody PL/IM 430 recognizes the SERCA 3 Ca2+ATPase in intracellular membranes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Adv Exp Med Biol. 1993;344:83-104 - PubMed
    1. Biochem J. 1984 Sep 1;222(2):413-7 - PubMed
    1. Biochim Biophys Acta. 1985 Sep 10;818(3):299-309 - PubMed
    1. Biochem J. 1985 Aug 15;230(1):247-53 - PubMed

Publication types

Substances