Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Nov;3(11):1961-74.
doi: 10.1002/pro.5560031108.

Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C

Affiliations

Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C

S M Gagné et al. Protein Sci. 1994 Nov.

Abstract

The backbone resonance assignments have been completed for the apo (1H and 15N) and calcium-loaded (1H, 15N, and 13C) regulatory N-domain of chicken skeletal troponin-C (1-90), using multidimensional homonuclear and heteronuclear NMR spectroscopy. The chemical-shift information, along with detailed NOE analysis and 3JHNH alpha coupling constants, permitted the determination and quantification of the Ca(2+)-induced secondary structural change in the N-domain of TnC. For both structures, 5 helices and 2 short beta-strands were found, as was observed in the apo N-domain of the crystal structure of whole TnC (Herzberg O, James MNG, 1988, J Mol Biol 203:761-779). The NMR solution structure of the apo form is indistinguishable from the crystal structure, whereas some structural differences are evident when comparing the 2Ca2+ state solution structure with the apo one. The major conformational change observed is the straightening of helix-B upon Ca2+ binding. The possible importance and role of this conformational change is explored. Previous CD studies on the regulatory domain of TnC showed a significant Ca(2+)-induced increase in negative ellipticity, suggesting a significant increase in helical content upon Ca2+ binding. The present study shows that there is virtually no change in alpha-helical content associated with the transition from apo to the 2Ca2+ state of the N-domain of TnC. Therefore, the Ca(2+)-induced increase in ellipticity observed by CD does not relate to a change in helical content, but more likely to changes in spatial orientation of helices.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biomol NMR. 1994 Mar;4(2):171-80 - PubMed
    1. J Biol Chem. 1994 Mar 4;269(9):6773-8 - PubMed
    1. Biochemistry. 1974 Jul 30;13(16):3350-9 - PubMed
    1. Biochemistry. 1977 Sep 6;16(18):4039-46 - PubMed
    1. J Mol Biol. 1977 Oct 5;115(4):743-60 - PubMed

Publication types

LinkOut - more resources