Potential suitability of Na+/K(+)-transporting ATPase in pre-screens for anti-cancer agents
- PMID: 7710638
Potential suitability of Na+/K(+)-transporting ATPase in pre-screens for anti-cancer agents
Abstract
Twenty-five compounds [digitalis (generic name for cardenolides, bufadienolides and their glycosides) representatives and derivatives, various steroids as well as some customary carcinostatics] have been compared in terms of their potency to suppress the proliferation of Ehrlich mouse ascites carcinoma (EMAC) cells and to inhibit the activity of Na/K-ATPase from EMAC cells and from human cardiac muscle. The inhibitor susceptibilities of the Na/K-ATPase isoforms of EMAC and cardiac muscle are very different, in favour of the cardiac muscle with the digitalis-like acting steroids, whereas they are quite similar with the digitalis-unlike acting compounds. Whereas the K0.5 values for the inhibition of EMAC Na/K-ATPase display the expected dependence on steroid structure, the IC50 values for the suppression of EMAC cell proliferation all lie within a narrow concentration range. With ouabain, the IC50 value for the suppression of proliferation of oestrogen receptor-negative, human mammary carcinoma (MCA) cells is four orders of magnitude higher than the K0.5 value for inhibition of the activity of human cardiac muscle Na/K-ATPase. In contrast to this effectivity order, some synthetic derivatives of digitalis steroids develop primarily antiproliferative potency.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources