Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr;14(4):305-12.
doi: 10.1089/dna.1995.14.305.

Intracellular sorting of aspartylglucosaminidase: the role of N-linked oligosaccharides and evidence of Man-6-P-independent lysosomal targeting

Affiliations

Intracellular sorting of aspartylglucosaminidase: the role of N-linked oligosaccharides and evidence of Man-6-P-independent lysosomal targeting

R Tikkanen et al. DNA Cell Biol. 1995 Apr.

Abstract

Aspartylglucosaminidase (AGA, E.C. 3.5.1.26) is a soluble lysosomal hydrolase that participates in the degradation of glycoproteins. Here we analyzed the special features in the intracellular targeting of this dimeric amidohydrolase, especially the role of N-linked sugars and their phosphorylation in transport and activity of heterodimeric aspartylglucosaminidase, using in vitro mutagenesis and transient expression of mutant polypeptides in COS cells. The single N-glycosylation sites of both the alpha and beta subunits were destroyed individually and in combination. Just one remaining N-glycosylation site on either subunit was sufficient for normal processing into subunits and lysosomal transport, but the totally nonglycosylated enzyme, although active and processed into subunits, was not transported into lysosomes and became trapped in the endoplasmic reticulum (ER) or secreted. The intracellular targeting of AGA was partially disturbed by the lack of glycosylation in the beta subunit, resulting in accumulation of dimeric, active polypeptides in the ER, whereas lack of oligosaccharides in the alpha subunit did not affect the intracellular targeting of AGA. N-glycans in the beta subunit were found to be essential for the long-term stability of the polypeptide in the cell, but not for initial folding or subunit processing into the active dimeric molecule. Both subunits have two glycosylation isoforms. Both forms of the alpha subunit were found to be phosphorylated, whereas only one of the two glycosylation isoforms of the beta subunit is phosphorylated. The mutant enzyme with nonglycosylated alpha subunit and nonphosphorylated beta subunit is transported into lysosomes, suggesting that AGA is capable of using an alternative, mannose-6-phosphate receptor-independent routing into lysosomes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources