Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr 14;270(15):8706-11.
doi: 10.1074/jbc.270.15.8706.

Catalyzed thermal isomerization between previtamin D3 and vitamin D3 via beta-cyclodextrin complexation

Affiliations
Free article

Catalyzed thermal isomerization between previtamin D3 and vitamin D3 via beta-cyclodextrin complexation

X Q Tian et al. J Biol Chem. .
Free article

Abstract

To examine the effect of microenvironments on previtamin D3<==>vitamin D3 isomerization, we have conducted kinetic studies of the reaction in an aqueous solution of beta-cyclodextrin. Our results showed that at 5 degrees C, the forward (k1) and reverse (k2) rate constants for previtamin D3<==>vitamin D3 isomerization were increased by more than 40 and 600 times, respectively, compared with those in n-hexane (k1, 8.65 x 10(-6) versus 1.76 x 10(-7) s-1; k2, 8.48 x 10(-6) versus 1.40 x 10(-8) s-1), the fastest rate of this isomerization ever reported at this temperature. Thermodynamic studies revealed that the equilibrium constant of the reaction was significantly reduced by more than 12-fold when compared to that in n-hexane at 5 degrees C, and the percentage of vitamin D3 at equilibrium was increased as the temperature was increased in beta-cyclodextrin. When complexed with beta-cyclodextrin, the previtamin D3<==>vitamin D3 isomerization became endothermic (delta H zero = 13.05 kJ mol-1) in contrast to being exothermic in other media. We propose that thermodynamically unfavorable cZc conformers of previtamin D3 are stabilized by beta-cyclodextrin, and thus the rate of the isomerization is increased. This conformation-controlled process may play an important role in the modulation of previtamin D3<==>vitamin D3 endocrine system in vivo such as in the sea urchin.

PubMed Disclaimer

Publication types

LinkOut - more resources