Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976;4(3):329-42.
doi: 10.1002/jss.400040304.

Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis toward L-serine

Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis toward L-serine

F W Dahlquist et al. J Supramol Struct. 1976.

Abstract

The details of the chemotactic response of Salmonella typhimurium to gradients of L-serine have been examined in some detail. Two relatively macroscopic techniques have been employed to measure the bacterial response. These include measurements of the average velocity as the bacterial population moves toward attractants, and measurement of the upward-to-downward flux ratio, R, in the stable preformed attractant gradients. The dependence of the average velocity on gradient appears to be hyperbolic in nature, while the flux ratio depends linearly on the gradient. These data suggest a microscopic model for the dependence of bacterial behavior on the serine gradient. The model involves a linear dependence of the mean lifetime of a bacterial trajectory on the gradient for those bacteria moving toward higher attractant concentration. Those moving toward low concentrations of attractant do not change the mean duration of their trajectories, or the speed at which a given bacterium swims through the solution. This model generates the observed dependences of the average velocity and flux ratio on gradient. Interpretation of the experimental data suggests that a gradient which increases serine concentration by a factor of 2 in 10 mm is sufficient to double the average duration of a trajectory for a bacterium moving directly up the gradient. The concentration dependence of the chemotactic response to serine is more complicated. It suggests that more than one receptor of serine may be involved in determining chemotactic behavior to this attractant.

PubMed Disclaimer

MeSH terms

LinkOut - more resources