Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;10(12):1543-52.
doi: 10.1002/yea.320101203.

Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts

Affiliations

Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts

R K Mortimer et al. Yeast. 1994 Dec.

Abstract

We have analyzed by genetic means 43 strains of Saccharomyces that had been isolated from fermenting grape musts in Italy. Twenty eight of these strains were isolated from 28 cellars in the Region of Emilia Romagna. The other 15 strains came from 5 fermentations at four cellars near the city of Arpino, which is located south and east of Rome. We found that 20 of the 28 strains from Emilia Romagna were heterozygous at from one to seven loci. The balance were, within the limits of our detection, completely homozygous. All these strains appeared to be diploid and most were homozygous for the homothallism gene (HO/HO). Spore viability varied greatly between the different strains and showed an inverse relation with the degree of heterozygosity. Several of the strains, and in particular those from Arpino, yielded asci that came from genetically different cells. These different cells could be interpreted to have arisen from a heterozygote that had sporulated and, because of the HO gene, yielded homozygous diploid spore clones. We propose that natural wine yeast strains can undergo such changes and thereby change a multiple heterozygote into completely homozygous diploids, some of which may replace the original heterozygous diploid. We call this process 'genome renewal'.

PubMed Disclaimer

Publication types

LinkOut - more resources