Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Apr 25;34(16):5527-35.
doi: 10.1021/bi00016a026.

Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum

Affiliations
Comparative Study

Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum

K A Bagley et al. Biochemistry. .

Abstract

Fourier transform infrared studies of nickel hydrogenase from Chromatium vinosum reveal the presence of a set of three absorption bands in the 2100-1900 cm-1 spectral region. These bands, which do not arise from carbon monoxide, have line widths and intensities rivaling those of a band arising from the carbon monoxide stretching frequency (v(CO)) in the Ni(II).CO species of this enzyme [Bagley, K. A., Van Garderen, C. J., Chen, M., Duin, E. C., Albracht, S. P. J., & Woodruff, W. H. (1994) Biochemistry 33, 9229-9236]. The positions of each of these three infrared absorption bands respond in a consistent way to changes in the formal redox state of the nickel center and to the photodissociation of hydrogen bound to the nickel. Up to eight different states of the nickel center have been produced, depending on the redox state and/or the activity state of the enzyme and the presence of carbon monoxide. In seven of these states, the three IR absorption bands in the set have unique frequency positions. It is concluded that the set is due to intrinsic, non-protein groups in the enzyme, whose identities are presently unknown, and that these groups are situated very close to the nickel center and sense the charge density at the Ni site.

PubMed Disclaimer

Publication types

LinkOut - more resources