Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 May;41(5):644-57.

Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation

Affiliations
  • PMID: 7729041
Review

Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation

W B Coleman et al. Clin Chem. 1995 May.

Abstract

Neoplastic cells typically possess numerous genomic mutations and chromosomal aberrations, including point mutations, gene amplifications and deletions, and replication errors. Acquisition of such genomic instability may represent an early step in the process of carcinogenesis. Proteins involved in DNA replication, DNA repair, cell cycle progression, and others are all components of complex overlapping biochemical pathways that function to maintain cellular homeostasis. Therefore, mutational alteration of genes encoding proteins involved in these cellular processes could contribute to genomic instability. Loss of normal cellular mechanisms that guard against genomic mutation and the ensuing genomic instability might lead to accumulation of multiple stable mutations in the genome of affected cells, perhaps resulting in neoplastic transformation when some critical number of transformation-related target genes become damaged. Thus, interactions of fundamental cellular processes play significant roles in sustaining cellular normality, and alteration of any of these homeostatic processes could entrain cells to the progressive genomic instability and phenotypic evolution characteristic of carcinogenesis. Here, we discuss possible molecular mechanisms governing DNA mutation and genomic instability in genetically normal cells that might account for the acquisition of genomic instability in somatic cells, leading to the development of neoplasia. These include (a) molecular alteration of genes encoding DNA repair enzymes, (b) molecular alteration of genes responsible for cell-cycle control mechanisms, and (c) direct molecular alteration of dominantly transforming cellular protooncogenes. We also discuss normal cellular processes involved with DNA replication and repair that can contribute to the mutational alteration of critical genes: e.g., slow repair of damaged DNA in specific genes, and the timing of normal gene-specific replication.

PubMed Disclaimer

Publication types