Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr 28;270(17):9757-62.
doi: 10.1074/jbc.270.17.9757.

Structural and functional analysis of the metal-binding sites of Clostridium thermocellum endoglucanase CelD

Affiliations
Free article

Structural and functional analysis of the metal-binding sites of Clostridium thermocellum endoglucanase CelD

S Chauvaux et al. J Biol Chem. .
Free article

Abstract

Crystallographic analysis indicated that Clostridium thermocellum endoglucanase CelD contained three Ca(2+)-binding sites, termed A, B, and C, and one Zn(2+)-binding site. The protein contributed five, six, and three of the coordinating oxygen atoms present at sites A, B, and C, respectively. Proteins altered by mutation in site A (CelDD246A), B (CelDD361A), or C (CelDD523A) were compared with wild type CelD. The Ca(2+)-binding isotherm of wild type CelD was compatible with two high affinity sites (Ka = 2 x 10(6) M-1) and one low affinity site (Ka < 10(5) M-1). The Ca(2+)-binding isotherms of the mutated proteins showed that sites A and B were the two high affinity sites and that site C was the low affinity site. Atomic absorption spectrometry confirmed the presence of one tightly bound Zn2+ atom per CelD molecule. The inactivation rate of CelD at 75 degrees C was decreased 1.9-fold upon increasing the Ca2+ concentration from 2 x 10(-5) to 10(-3) M. The Km of CelD was decreased 1.8-fold upon increasing the Ca2+ concentration from 5 x 10(-6) to 10(-4) M. Over similar ranges of concentration, Ca2+ did not affect the thermostability nor the kinetic properties of CelDD523A. These findings suggest that Ca2+ binding to site C stabilizes the active conformation of CelD in agreement with the close vicinity of site C to the catalytic center.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources