Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr;58(1):111-6.
doi: 10.1016/0165-5728(95)00016-u.

Role of nitric oxide and melanogenesis in the accomplishment of anticryptococcal activity by the BV-2 microglial cell line

Affiliations

Role of nitric oxide and melanogenesis in the accomplishment of anticryptococcal activity by the BV-2 microglial cell line

E Blasi et al. J Neuroimmunol. 1995 Apr.

Abstract

In the present paper, we investigated the involvement of cryptococcal melanogenesis and macrophage nitric oxide (NO) production in the accomplishment of anticryptococcal activity by microglial effector cells, using the murine cell line BV-2. We demonstrate that the constitutive levels of anticryptococcal activity exerted by BV-2 cells is significantly enhanced upon interferon gamma plus lipopolysaccharide treatment. The phenomenon, which occurs with no enhancement of phagocytic activity, is associated with the production of high levels of NO and is abolished by addition of NG-monomethyl-L-arginine. Comparable patterns of results are observed employing either unopsonized or opsonized microbial targets, the latter microorganisms being markedly more susceptible to BV-2 cell antimicrobial activity. Furthermore, melanization of Cryptococcus neoformans significantly reduces its susceptibility to BV-2 antimicrobial activity, regardless of the fact that activated macrophages or opsonized microorganisms have been employed. In conclusion, our results provide evidence that NO-dependent events are involved in the fulfillment of anticryptococcal activity by activated microglial cells and that fungal melanization is a precious escamotage through which C. neoformans overcomes host defenses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources