Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Mar;70(1):1-52.
doi: 10.1086/418864.

Hormones and the physiological architecture of life history evolution

Affiliations
Review

Hormones and the physiological architecture of life history evolution

C E Finch et al. Q Rev Biol. 1995 Mar.

Abstract

Hormones play key roles in the regulation of animal and plant life histories, particularly in the timing of transitions between prematurational stages and in the scheduling of reproduction. Furthermore, hormonal mechanisms are subject to information about the external and internal environment of the individual. Within an evolutionary radiation, the same hormone subsets often regulate the schedules of development as well as adult reproduction and related activities and, moreover, are involved in mechanisms of senescence. We propose that the pleiotropic and epistatic effects from hormonal and neural mechanisms are an important substratum for life history evolution. This analysis of hormonal mechanisms in senescence implicates a role for antagonistic pleiotropy in selection for particular subsets of hormonal mechanisms that can be traced throughout prematurational and postmaturational stages. In the example of the vertebrate MHC (major histocompatibility complex), polymorphic loci have been assembled with pleiotropic actions on several regulatory axes affecting reproduction and other fitness components. We argue that the MHC and other complex loci may be considered as life history gene complexes, with pleiotropic influences throughout the lifespan. While analyses of this kind might suggest that life histories could be evolutionarily rigid, in our interpretation the population genetics that is involved provides a theoretical basis for great flexibility in hormonal regulation during life history evolution. It is possible that life history evolution among taxonomic groups may sometimes be chaotic, which would frustrate strong inferences by the comparative method in the study of life histories between taxonomic groups.

PubMed Disclaimer

Publication types

LinkOut - more resources