Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr;268(4 Pt 2):H1765-72.
doi: 10.1152/ajpheart.1995.268.4.H1765.

Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers

Affiliations

Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers

K A Barbee et al. Am J Physiol. 1995 Apr.

Abstract

The stresses acting on the luminal surface of endothelial cells due to shear flow were determined on a subcellular scale. Atomic force microscopy was used to measure the surface topography of confluent endothelial monolayers cultured under no-flow conditions or exposed to steady shear stress (12 dyn/cm2 for 24 h). Flow over these surface geometries was simulated by computational fluid dynamics, and the distribution of shear stress on the cell surface was calculated. Flow perturbations due to the undulating surface produced cell-scale variations of shear stress magnitude and hence large shear stress gradients. Reorganization of the endothelial surface in response to prolonged exposure to steady flow resulted in significant reductions in the peak shear stresses and shear stress gradients. From the relationship between surface geometry and the resulting shear stress distribution, we have defined a hydrodynamic shape factor that characterizes the three-dimensional morphological response of endothelial cells to flow. The analysis provides a complete description of the spatial distribution of stresses on individual endothelial cells within a confluent monolayer on a scale relevant to the study of physical mechanisms of mechanotransduction.

PubMed Disclaimer

Publication types

LinkOut - more resources