Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;4(6):759-67.
doi: 10.1093/glycob/4.6.759.

A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems

Affiliations

A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems

R A Laine. Glycobiology. 1994 Dec.

Abstract

The number of all possible linear and branched isomers of a hexasaccharide was calculated and found to be > 1.05 x 10(12). This large number defines the Isomer Barrier, a persistent technological barrier to the development of a single analytical method for the absolute characterization of carbohydrates, regardless of sample quantity. Because of this isomer barrier, no single method can be employed to determine complete oligosaccharide structure in 100 nmol amounts with the same assurance that can be achieved for 100 pmol amounts with single-procedure Edman peptide or Sanger DNA sequencing methods. Difficulties in the development of facile synthetic schemes for oligosaccharides are also explained by this large number. No current method of chemical or physical analysis has the resolution necessary to distinguish among 10(12) structures having the same mass. Therefore the 'characterization' of a middle-weight oligosaccharide solely by NMR or mass spectrometry necessarily contains a very large margin of error. Greater uncertainty accompanies results performed solely by sequential enzyme degradation followed by gel-permeation chromatography or electrophoresis, as touted by some commercial advertisements. Much of the literature which uses these single methods to 'characterize' complex carbohydrates is, therefore, in question, and journals should beware of publishing structural characterizations unless the authors reveal all alternate possible structures which could result from their analysis.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources