Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995:159:195-263.
doi: 10.1016/s0074-7696(08)62108-7.

Effects of axotomy, deafferentation, and reinnervation on sympathetic ganglionic synapses: a comparative study

Affiliations
Review

Effects of axotomy, deafferentation, and reinnervation on sympathetic ganglionic synapses: a comparative study

J Taxi et al. Int Rev Cytol. 1995.

Abstract

The main physiological and morphological features of the synapses in the superior cervical ganglia of mammals and the last two abdominal ganglia of the frog sympathetic chain are summarized. The effects of axotomy on structure and function of ganglionic synapses are then reviewed, as well as various changes in neuronal metabolism in mammals and in the frog, in which the parallel between electrophysiological and morphological data leads to the conclusion that a certain amount of synaptic transmission occurs at "simple contacts." The effects of deafferentation on synaptic transmission and ultrastructure in the mammalian ganglia are reviewed: most synapses disappear, but a number of postsynaptic thickenings remain unchanged. Moreover, intrinsic synapses persist after total deafferentation and their number is strongly increased if axotomy is added to deafferentation. In the frog ganglia, the physiological and morphological evolution of synaptic areas is comparable to that of mammals, but no intrinsic synapses are observed. The reinnervation of deafferented sympathetic ganglia by foreign nerves, motor or sensory, is reported in mammals, with different degrees of efficiency. In the frog, the reinnervation of sympathetic ganglia with somatic motor nerve fibers is obtained in only 20% of the operated animals. The possible reasons for the high specificity of ganglionic connections in the frog are discussed.

PubMed Disclaimer

Similar articles

Cited by