Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 5;270(18):10525-30.
doi: 10.1074/jbc.270.18.10525.

Structural basis for the biological activities of bovine seminal ribonuclease

Affiliations
Free article

Structural basis for the biological activities of bovine seminal ribonuclease

J S Kim et al. J Biol Chem. .
Free article

Abstract

Bovine seminal ribonuclease (BS-RNase) is a homolog of RNase A with special biological properties that include specific antitumor, aspermatogenic, and immuno-suppressive activities. Unlike RNase A, BS-RNase is a dimer cross-linked by disulfide bonds between Cys31 of one subunit and Cys32 of the other. At equilibrium, this dimer is a mixture of two distinct quaternary forms, M = M and M x M. The conversion of M = M to M x M entails the exchange of NH2-terminal alpha-helices between subunits. Here, the cytotoxic activities of purified M x M were shown to be greater than those of purified M = M, despite extensive equilibration of M = M and M x M during the time course of the assays. Replacing Cys31 or Cys32 with a serine residue did not compromise the enzymatic activity of dimeric BS-RNase, but reduced both the fraction of M x M at equilibrium and the cytotoxicity. We conclude that the M x M form is responsible for the special biological properties of BS-RNase. Since cytosolic ribonuclease inhibitor binds tightly to monomeric but not dimeric BS-RNase and only the M x M form can remain dimeric in the reducing environment of the cytosol, we propose that BS-RNase has evolved its M x M form to retain its lethal enzymatic activity in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources