Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May;15(5):2719-27.
doi: 10.1128/MCB.15.5.2719.

Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control

Affiliations

Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control

A W Johnson et al. Mol Cell Biol. 1995 May.

Abstract

Strand exchange protein 1 (Sep1) (also referred to as exoribonuclease I [Xrn1]) from Saccharomyces cerevisiae has been implicated in DNA recombination, RNA turnover, karyogamy, and G4 DNA pairing among other disparate cellular processes. Using a genetic approach to study the role of SEP1/XRN1 in mitotic yeast cells, we identified mutations in the genes superkiller 2 (SKI2) and superkiller 3 (SKI3) as synthetically lethal with an sep1 null mutation. The SKI genes are thought to comprise an intracellular antiviral system controlling the expression of killer toxin from double-stranded RNA virus found in many yeast strains. However, the lethality of sep1 ski2 and sep1 ski3 mutants was independent of the L-A and M viruses, suggesting that the SKI genes act in a general cellular process in addition to virus control. We propose that Sep1/Xrn1 and Ski2 both act to block translation on transcripts targeted for degradation. Using a temperature-sensitive allele of SEP1/XRN1, we show that double mutants display a synthetic cell cycle arrest in late G1 at Start.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6629-33 - PubMed
    1. J Bacteriol. 1978 Dec;136(3):1002-7 - PubMed
    1. Mol Cell Biol. 1994 Apr;14(4):2664-74 - PubMed
    1. Genetics. 1990 Dec;126(4):799-812 - PubMed
    1. Nucleic Acids Res. 1992 Mar 25;20(6):1425 - PubMed

Publication types