Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 15;85(10):2962-6.

Effect of nitric oxide on expression of transferrin receptor and ferritin and on cellular iron metabolism in K562 human erythroleukemia cells

Affiliations
  • PMID: 7742556
Free article

Effect of nitric oxide on expression of transferrin receptor and ferritin and on cellular iron metabolism in K562 human erythroleukemia cells

R Oria et al. Blood. .
Free article

Abstract

Nitric oxide (NO) is known to increase the affinity of the intracellular iron-regulatory protein (IRP) for iron-response elements (IREs) in transferrin receptor and ferritin mRNAs, suggesting that it may act as a regulator of cellular iron metabolism. In this study, exogenous NO produced by adding the NO-generator S-nitroso-N-acetyl penicillamine gave a dose-dependent upregulation of transferrin receptor expression by K562 erythroleukemia cells and increased levels of transferrin receptor mRNA. NO did not affect the affinity of transferrin binding by the transferrin receptor. NO alone did not alter intracellular ferritin levels, but it did abrogate the inhibitory effect of the iron chelator desferrioxamine and potentiated the stimulatory effect of additional iron. NO also caused some increase in ferritin mRNA levels, which might mask any IRP-/IRE-mediated inhibitory effect of NO on ferritin translation. Although NO did not affect net iron uptake, it increased release of iron from K562 cells pulsed previously with 59Fe, and subcellular fractionation showed that it also increased the proportion of intracellular iron bound to ferritin. These findings provide direct evidence that NO can affect cellular iron metabolism and suggest that NO produced in vivo by activated bone marrow macrophages might affect erythropoiesis.

PubMed Disclaimer

Publication types

LinkOut - more resources