Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Jan 30;670(2):333-6.
doi: 10.1016/0006-8993(94)01356-m.

Can a population of suprachiasmatic nucleus neurons with different period lengths produce a stable circadian rhythm?

Affiliations
Comparative Study

Can a population of suprachiasmatic nucleus neurons with different period lengths produce a stable circadian rhythm?

Y Bouskila et al. Brain Res. .

Abstract

The firing rate of a population of SCN neurons in vivo exhibits stable circadian oscillations, but the period length of individual neurons is not known and may be different or similar to the population rhythm. To address this question we used published data from Bos and Mirmiran [Brain Res., 511 (1990) 158-162] that reported different period lengths and amplitudes for individual neurons recorded in explant cultures of the SCN. We reconstructed the individual rhythms for several cycles, calculated the population rhythm, and then tested its stability. The period and amplitude of the rhythm of groups of neurons with different period lengths were unstable. Furthermore, the stability of the rhythm was reduced as the number of sampled neurons increased. These results suggest that the stable circadian rhythm reported for neuron populations in the intact SCN emerges from the identical period length of individual neurons. The possible intercellular interactions in the SCN that may underlie the stable circadian rhythm are discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources