Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Jan;15(2):235-45.
doi: 10.1111/j.1365-2958.1995.tb02238.x.

Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis

Affiliations
Comparative Study

Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis

B Heym et al. Mol Microbiol. 1995 Jan.

Abstract

The toxicity of the powerful anti-tuberculosis drug isoniazid (INH) is believed to be mediated by the haem-containing enzyme catalase-peroxidase, encoded by the katG gene of Mycobacterium tuberculosis. Compelling evidence for this was obtained by studying a panel of INH-resistant clinical isolates using a novel strategy based on the polymerase chain reaction and single-strand-conformation polymorphism analysis (PCR-SSCP) to detect mutations in katG. In most cases INH resistance was associated with missense mutations while in a small number of strains the gene had been completely, or partially, deleted. The missense mutations fell into two groups, the larger of which contained several independent mutations that affected the N-terminal peroxidase domain of the protein, resulting in the production of a catalase peroxidase with strongly reduced enzyme activity and increased heat liability. The effects of these substitutions could be interpreted by means of molecular modelling using the crystal structure of the related enzyme cytochrome c peroxidase from yeast as a template. The second group comprises a frequently occurring amino acid substitution and a single mutation that are both located in the C-terminal domain but do not noticeably alter either enzyme activity or heat stability.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources