Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May;14(5):1047-54.
doi: 10.1016/0896-6273(95)90343-7.

Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel

Affiliations
Free article

Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel

J Yang et al. Neuron. 1995 May.
Free article

Abstract

Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, suggesting that a channel pore can accommodate more than one blocking particle. A negatively charged amino acid in the hydrophilic C-terminal domain is found to be critical for both inward rectification and ion permeation. This residue and a negatively charged residue in the putative second transmembrane segment (M2) contribute independently to high affinity binding of Mg2+ and polyamines. Mutation of this residue also induces Mg(2+)- and polyamine-independent inward rectification and dramatically alters single-channel behavior. We propose that the hydrophilic C-terminal domain comprises part of the channel pore and that involvement of both hydrophilic and hydrophobic domains in pore lining may provide a molecular basis for the multi-ion, long-pore nature of inwardly rectifying K+ channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources