Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 May 26;270(21):12526-30.
doi: 10.1074/jbc.270.21.12526.

The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer

Affiliations
Free article
Comparative Study

The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer

G E Schaller et al. J Biol Chem. .
Free article

Abstract

Mutations in the ETR1 gene of the higher plant Arabidopsis confer insensitivity to ethylene, indicating a role for the gene product in ethylene signal perception and transduction. The ETR1 gene product has an amino-terminal hydrophobic domain and a carboxyl-terminal domain showing homology to the two-component signal transduction proteins of bacteria. We report here that in both its native Arabidopsis and when transgenically expressed in yeast, the ETR1 protein is isolated from membranes as a dimer of 147 kDa. Treatment with the reducing agent dithiothreitol converted the dimer to a monomer of 79 kDa, indicative of a disulfide linkage between monomers. Expression of truncated versions of ETR1 in yeast confirmed that the high molecular mass form is a homodimer and demonstrated that the amino-terminal region of ETR1 is necessary and sufficient for this dimerization. Site-directed mutagenesis of two cysteines near the amino terminus of ETR1 prevented formation of the covalently linked dimer in yeast, consistent with a role in disulfide bond formation. These data indicate that ETR1 may use a dimeric mechanism of signal transduction in a manner similar to its bacterial counterparts but with the additional feature of a disulfide bond between monomers.

PubMed Disclaimer

Publication types

MeSH terms