Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 26;270(21):12584-92.
doi: 10.1074/jbc.270.21.12584.

Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms

Affiliations
Free article

Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms

R W Welch et al. J Biol Chem. .
Free article

Abstract

It is unknown whether ascorbate alone (vitamin C), its oxidized metabolite dehydroascorbic acid alone, or both species are transported into human cells. This problem was addressed using specific assays for each compound, freshly synthesized pure dehydroascorbic acid, the specially synthesized analog 6-chloroascorbate, and a new assay for 6-chloroascorbate. Ascorbate and dehydroascorbic acid were transported and accumulated distinctly; neither competed with the other. Ascorbate was accumulated as ascorbate by sodium-dependent carrier-mediated active transport. Dehydroascorbic acid transport and accumulation as ascorbate was at least 10-fold faster than ascorbate transport and was sodium-independent. Once transported, dehydroascorbic acid was immediately reduced intracellularly to ascorbate. The analog 6-chloroascorbate had no effect on dehydroascorbic acid transport but was a competitive inhibitor of ascorbate transport. The Ki for 6-chloroascorbate (2.9-4.4 microM) was similar to the Km for ascorbate transport (9.8-12.6 microM). 6-Chloroascorbate was itself transported and accumulated in fibroblasts by a sodium-dependent transporter. These data provide new information that ascorbate and dehydroascorbic acid are transported into human neutrophils and fibroblasts by two distinct mechanisms and that the compound available for intracellular utilization is ascorbate.

PubMed Disclaimer

LinkOut - more resources