Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May;38(5):767-75.
doi: 10.1097/00005373-199505000-00016.

Dopexamine hydrochloride in septic shock: effects on oxygen delivery and oxygenation of gut, liver, and muscle

Affiliations

Dopexamine hydrochloride in septic shock: effects on oxygen delivery and oxygenation of gut, liver, and muscle

N Lund et al. J Trauma. 1995 May.

Abstract

It has been suggested that septic shock is a disorder of microvascular autoregulation. Tissue blood flow is modulated by the state of activation of upstream endothelial receptors controlling the vascular smooth muscle tone. Because vascular receptor populations vary between organs, it should be expected that vasoactive drugs affect tissue oxygenation differently in different organs. We studied the effects of dopexamine HCl (a novel inotrope) and septic shock on oxygen delivery as well as tissue Po2 in gut, liver, and skeletal muscle in anesthetized rabbits. Employing the thermodilution technique, cardiac output was measured across the pulmonary bed and used to calculate oxygen delivery. Three eight-channel Mehrdraht Dortmund Oberfläche oxygen electrodes were placed on gut serosa, liver, and skeletal muscle surfaces, respectively, and sufficient readings were obtained to calculate tissue Po2 distributions. During septic shock mean arterial pressure, cardiac output, oxygen delivery, and mean tissue Po2 decreased in all organs. Our results suggest that the observed changes in tissue oxygenation during septic shock were caused by defective regulation of microvascular blood flow. In conclusion, during baseline conditions dopexamine HCl caused no statistically significant changes in tissue oxygenation in any organ, except in skeletal muscle at 10 micrograms/kg/min when tissue Po2 increased. During septic shock, however, dopexamine HCl improved oxygenation in all three organs in a dose-dependent manner.

PubMed Disclaimer

Publication types

LinkOut - more resources