Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 May 14;430(2):321-6.
doi: 10.1016/0005-2728(76)90088-8.

Ascorbate-independent carotenoid de-epoxidation in intact spinach chloroplasts

Ascorbate-independent carotenoid de-epoxidation in intact spinach chloroplasts

P M Sokolove et al. Biochim Biophys Acta. .

Abstract

Slow (greater 1 s) light-induced absorbance changes in the 475-5300 nm spectral region were examined in Type A chloroplasts from spinach. The most prominent absorption change occurred at 505 nm. The difference spectrum for this light-induced increase, its absence in osmotically shocked chloroplasts and restoration by ascorbate, and its sensitivity to dithiothreitol indicate that the absorption change is due to carotenoid de-epoxidatiion. The reaction in intact chloroplasts is characterized by its independence of exogenous ascorbate and a rate constant 3- to 8-fold higher than that reported previously for chloroplasts supplemented with ascorbate. The relevance of carotenoid de-epoxidation to other photosynthetic processes was examined by comparing their sensitivities to dithiothreitol. Levels of dithiothreitol that eliminate the 505 nm shift are without effect on saturated rates of CO2 fixation and do not appreciably inhibit fluorescence quenching. We conclude that carotenoid de-epoxidation is not directly involved in the reactions of photosynthesis or in the regulation of excitation allocation between the photosystems.

PubMed Disclaimer

Publication types

LinkOut - more resources