Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 11;49(9):1261-7.
doi: 10.1016/0006-2952(95)00046-3.

Reactions of reducing xenobiotics with oxymyoglobin. Formation of metmyoglobin, ferryl myoglobin and free radicals: an electron spin resonance and chemiluminescence study

Affiliations

Reactions of reducing xenobiotics with oxymyoglobin. Formation of metmyoglobin, ferryl myoglobin and free radicals: an electron spin resonance and chemiluminescence study

K Stolze et al. Biochem Pharmacol. .

Abstract

The oxygen-haem centre of oxymyoglobin reacts with reducing xenobiotics such as hydroxylamines and phenols with the concomitant formation of metmyoglobin and oxidation of the respective xenobiotic. Metmyoglobin formation rates were measured by visible spectroscopy with xenobiotic concentrations ranging from 100 microM to 30 mM. Analogous to previous results obtained with oxyhaemoglobin, the first step in the reaction of hydroxylamines with oxymyoglobin leads to the formation of the one-electron oxidation product of hydroxylamine, a nitroxyl radical detectable by electron spin resonance. A variety of paramagnetic secondary products were also found. The terminal oxidation product of hydroxylamine and hydroxyurea was the myoglobin-nitric oxide complex, one showing similar spectral characteristics to the analogous haemoglobin-nitric oxide adduct found in our previous experiments. On the other hand, the amount of low-spin ferric complexes obtained from metmyoglobin and an excess of the respective hydroxylamine was considerably lower than the corresponding results with methaemoglobin. A second important reaction intermediate was the compound I-type ferryl haem-species detected by a recently-published chemiluminescence assay. Partial spectral resolution of the emitted light using a set of cut-off filters indicated that maximum light emission occurred above 600 nm, most probably involving excited porphyrin states. The intensity of oxymyoglobin-related light emission was considerably higher than that reported earlier with oxyhaemoglobin. This indicates a difference in the excitation mechanism which leads to the formation of the compound I-type ferry haem species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources