Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;12(7):689-93.
doi: 10.1038/nbt0794-689.

Biodegradable polymer scaffolds for tissue engineering

Affiliations

Biodegradable polymer scaffolds for tissue engineering

L E Freed et al. Biotechnology (N Y). 1994 Jul.

Abstract

Synthetic polymer scaffolds designed for cell transplantation were reproducibly made on a large scale and studied with respect to biocompatibility, structure and biodegradation rate. Polyglycolic acid (PGA) was extruded and oriented to form 13 microns diameter fibers with desired tenacity. Textile processing techniques were used to produce fibrous scaffolds with a porosity of 97% and sufficient structural integrity to maintain their dimensions when seeded with isolated cartilage cells (chondrocytes) and cultured in vitro at 37 degrees C for 8 weeks. Cartilaginous tissue consisting of glycosaminoglycan and collagen was regenerated in the shape of the original PGA scaffold. The resulting cell-polymer constructs were the largest grown in vitro to date (1 cm diameter x 0.35 cm thick). Construct mass was accurately predicted by accounting for accumulation of tissue components and scaffold degradation. The scaffold induced chondrocyte differentiation with respect to morphology and phenotype and represents a model cell culture substrate that may be useful for a variety of tissue engineering applications.

PubMed Disclaimer

Publication types

LinkOut - more resources