Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul;31(1):5-9.
doi: 10.1007/BF00294625.

In vivo hemolytic activity of group B streptococcus is dependent on erythrocyte-bacteria contact and independent of a carrier molecule

Affiliations

In vivo hemolytic activity of group B streptococcus is dependent on erythrocyte-bacteria contact and independent of a carrier molecule

M W Platt. Curr Microbiol. 1995 Jul.

Abstract

Experiments were performed to determine the interaction between the hemolysin of group B streptococcus (GBS) and sheep erythrocytes. Growing GBS were shown to possess a potent hemolysin at a very early stage of the growth cycle. After separation of the cells from the growth medium, all the hemolytic activity remained with the bacterial cells, and no activity could be detected in the growth medium. When fetal calf serum was added to the media, some "soluble" activity was detected. This activity, however was completely removed by ultracentrifugation, the hemolytic activity being found solely in the pellet. After the hemolysin had formed, no new protein synthesis was needed to cause hemolysis because the addition of chloramphenicol to cells caused no difference in their hemolytic potential. For proof that no short-lived, soluble factors are produced by the bacteria, bacteria and sheep erythrocytes were incubated in contiguous media, separated by a 0.22-microns membrane. No hemolytic activity was detected on the erythrocyte side of the membrane, although high amounts of hemolysin could be extracted from the bacteria. Only when a detergent was added to the growth medium was hemolysis detected from the erythrocytes, showing that extracted hemolysin could indeed pass through the membrane. These results suggest that the hemolysin is attached to the surface of the cell and that contact is needed between the bacteria and erythrocyte to cause lysis. Where soluble activity was detected, it was connected to bacterial fragments.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Infect Immun. 1993 Jun;61(6):2708-12 - PubMed
    1. Methods Enzymol. 1988;165:59-64 - PubMed
    1. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7208-12 - PubMed
    1. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8983-7 - PubMed
    1. J Exp Med. 1933 Mar 31;57(4):571-95 - PubMed