Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jan-Mar;12(1):15-20.
doi: 10.3109/09687689509038490.

Micro-, nano- and meso-scale heterogeneity of lipid bilayers and its influence on macroscopic membrane properties

Affiliations
Free article

Micro-, nano- and meso-scale heterogeneity of lipid bilayers and its influence on macroscopic membrane properties

O G Mouritsen et al. Mol Membr Biol. 1995 Jan-Mar.
Free article

Abstract

The lipid-bilayer component of cell membranes is a mesoscopic system consisting typically of the order of 10(8)-10(10) interacting particles. In its capacity as an interacting many-particle system, the membrane sustains correlated dynamical modes and it may display co-operative phenomena such as static global phase separation and dynamic local heterogeneity. These phenomena, which are highly non-trivial collective consequences of the molecular interactions, cannot be understood or described in terms of the properties of individual molecules alone. The microscopic manifestation of the co-operative modes consists in the formation of micro- and nano-scale heterogeneous structures, such as lipid domains, that are dynamically maintained. The lipid domains may be seen as either lateral density fluctuations or compositional fluctuations. The macroscopic consequences of these fluctuations are anomalies in response functions, such as the specific heat and the lateral compressibility. The dynamic heterogeneity corresponds to a specific lateral organization of the molecular constituents of the membrane. On the basis of recent experimental and theoretical progress in the study of the physical properties of lipid-bilayer membranes, in particular detailed pictures derived from computer simulations on models of bilayer membranes, it is proposed that the dynamically heterogeneous membrane states, which are induced by thermal density fluctuations and lateral compositional fluctuations, are important for passive and active membrane functions such as transmembrane permeability, enzymatic activity, and the in-plane aggregation of protein subunits to functioning protein complexes. Membrane-associated functions may be manipulated by changes in the heterogeneous membrane structure that can be significantly altered in response to changes in compositional, thermodynamic and environmental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources